4 Tools and Technologies

CDI emphasizes layered toolkits organized by analytical purpose and programming language. Domains may extend these with specialized tools.

4.1 ๐Ÿงช EDA โ€“ Exploratory Data Analysis

Python: pandas, numpy, sweetviz, ydata-profiling
R: dplyr, tidyr, skimr, DataExplorer, readr, janitor


4.2 ๐Ÿ“Š VIZ โ€“ Data Visualization

Python: matplotlib, seaborn, plotly, altair
R: ggplot2, GGally, ggcorrplot, plotly


4.3 ๐Ÿ“ˆ STATS โ€“ Statistical Analysis

Python: scipy.stats, statsmodels, pingouin
R: stats, car, MASS, emmeans, lme4, broom, brms


4.4 ๐Ÿค– ML โ€“ Machine Learning

Python: scikit-learn, xgboost, lightgbm, joblib, mlflow
R: tidymodels, xgboost, ranger, caret, mlr3, tune

๐Ÿงฐ Additional examples:
โ€ข Microbiome: QIIME2, phyloseq
โ€ข RNA-Seq: DESeq2, edgeR
โ€ข GWAS: PLINK, GEMMA
โ€ข Time Series: Prophet, tsibble
โ€ข Deployment: FastAPI, Streamlit