4 Tools and Technologies
CDI emphasizes layered toolkits organized by analytical purpose and programming language. Domains may extend these with specialized tools.
4.1 ๐งช EDA โ Exploratory Data Analysis
Python: pandas, numpy, sweetviz, ydata-profiling
R: dplyr, tidyr, skimr, DataExplorer, readr, janitor
4.2 ๐ VIZ โ Data Visualization
Python: matplotlib, seaborn, plotly, altair
R: ggplot2, GGally, ggcorrplot, plotly
4.3 ๐ STATS โ Statistical Analysis
Python: scipy.stats, statsmodels, pingouin
R: stats, car, MASS, emmeans, lme4, broom, brms
4.4 ๐ค ML โ Machine Learning
Python: scikit-learn, xgboost, lightgbm, joblib, mlflow
R: tidymodels, xgboost, ranger, caret, mlr3, tune
๐งฐ Additional examples:
โข Microbiome:QIIME2,phyloseq
โข RNA-Seq:DESeq2,edgeR
โข GWAS:PLINK,GEMMA
โข Time Series:Prophet,tsibble
โข Deployment:FastAPI,Streamlit